Computing Multivariate Fekete and Leja Points by Numerical Linear Algebra

نویسندگان

  • Len Bos
  • Stefano De Marchi
  • Alvise Sommariva
  • Marco Vianello
چکیده

We discuss and compare two greedy algorithms, that compute discrete versions of Fekete-like points for multivariate compact sets by basic tools of numerical linear algebra. The first gives the so-called “Approximate Fekete Points” by QR factorization with column pivoting of Vandermonde-like matrices. The second computes Discrete Leja Points by LU factorization with row pivoting. Moreover, we study the asymptotic distribution of such points when they are extracted from Weakly Admissible Meshes. AMS subject classifications. 41A10, 41A63, 65D05.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locating good points for multivariate polynomial approximation

Locating good points for multivariate polynomial approximation, in particular interpolation, is an open challenging problem, even in standard domains. One set of points that is always good, in theory, is the so-called Fekete points. They are defined to be those points that maximize the (absolute value of the) Vandermonde determinant on the given compact set. However, these are known analyticall...

متن کامل

Polynomial approximation and cubature at approximate Fekete and Leja points of the cylinder

The paper deals with polynomial interpolation, least-square approximation and cubature of functions defined on the rectangular cylinder, K = D × [−1, 1], with D the unit disk. The nodes used for these processes are the Approximate Fekete Points (AFP) and the Discrete Leja Points (DLP) extracted from suitable Weakly Admissible Meshes (WAMs) of the cylinder. ¿From the analysis of the growth of th...

متن کامل

Weakly Admissible Meshes and Discrete Extremal Sets

We present a brief survey on (Weakly) Admissible Meshes and corresponding Discrete Extremal Sets, namely Approximate Fekete Points and Discrete Leja Points. These provide new computational tools for polynomial least squares and interpolation on multidimensional compact sets, with different applications such as numerical cubature, digital filtering, spectral and high-order methods for PDEs.

متن کامل

Computing approximate Fekete points by QR factorizations of Vandermonde matrices

We propose a numerical method (implemented in Matlab) for computing algebraic quadrature nodes and weights on compact multivariate domains. It relies on the search of maximum volume submatrices of Vandermonde matrices in suitable polynomial bases, by a greedy algorithm based on QR factorization with column pivoting. Such nodes are approximate Fekete points, and are good also for polynomial inte...

متن کامل

Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection∗

Matrix functions are a central topic of linear algebra, and problems of their numerical approximation appear increasingly often in scientific computing. We review various rational Krylov methods for the computation of large-scale matrix functions. Emphasis is put on the rational Arnoldi method and variants thereof, namely, the extended Krylov subspace method and the shift-and-invert Arnoldi met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2010